Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0, 1, X) → h(X, X)
h(0, X) → f(0, X, X)
g(X, Y) → X
g(X, Y) → Y
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0, 1, X) → h(X, X)
h(0, X) → f(0, X, X)
g(X, Y) → X
g(X, Y) → Y
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(0, 1, X) → H(X, X)
H(0, X) → F(0, X, X)
The TRS R consists of the following rules:
f(0, 1, X) → h(X, X)
h(0, X) → f(0, X, X)
g(X, Y) → X
g(X, Y) → Y
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
Q DP problem:
The TRS P consists of the following rules:
F(0, 1, X) → H(X, X)
H(0, X) → F(0, X, X)
The TRS R consists of the following rules:
f(0, 1, X) → h(X, X)
h(0, X) → f(0, X, X)
g(X, Y) → X
g(X, Y) → Y
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(0, 1, X) → H(X, X)
H(0, X) → F(0, X, X)
The TRS R consists of the following rules:
f(0, 1, X) → h(X, X)
h(0, X) → f(0, X, X)
g(X, Y) → X
g(X, Y) → Y
Q is empty.
We have to consider all minimal (P,Q,R)-chains.